منابع مشابه
Regulated internalization of caveolae
Caveolae are specialized invaginations of the plasma membrane which have been proposed to play a role in diverse cellular processes such as endocytosis and signal transduction. We have developed an assay to determine the fraction of internal versus plasma membrane caveolae. The GPI-anchored protein, alkaline phosphatase, was clustered in caveolae after antibody-induced crosslinking at low tempe...
متن کاملHormonal regulation of caveolae internalization
Caveolae undergo a cyclic transition from a flat segment of membrane to a vesicle that then returns to the cell surface. Here we present evidence that this cycle depends on a population of protein kinase C-alpha (PKC-alpha) molecules that reside in the caveolae membrane where they phosphorylate a 90-kD protein. This cycle can be interrupted by treatment of the cells with phorbol-12,13-dibutyrat...
متن کاملDynamin-mediated Internalization of Caveolae
The dynamins comprise an expanding family of ubiquitously expressed 100-kD GTPases that have been implicated in severing clathrin-coated pits during receptor-mediated endocytosis. Currently, it is unclear whether the different dynamin isoforms perform redundant functions or participate in distinct endocytic processes. To define the function of dynamin II in mammalian epithelial cells, we have g...
متن کاملInternalization of echovirus 1 in caveolae.
Echovirus 1 (EV1) is a human pathogen which belongs to the Picornaviridae family of RNA viruses. We have analyzed the early events of infection after EV1 binding to its receptor alpha 2 beta 1 integrin and elucidated the route by which EV1 gains access to the host cell. EV1 binding onto the cell surface and subsequent entry resulted in conformational changes of the viral capsid as demonstrated ...
متن کاملCaveolae internalization repairs wounded cells and muscle fibers
Rapid repair of plasma membrane wounds is critical for cellular survival. Muscle fibers are particularly susceptible to injury, and defective sarcolemma resealing causes muscular dystrophy. Caveolae accumulate in dystrophic muscle fibers and caveolin and cavin mutations cause muscle pathology, but the underlying mechanism is unknown. Here we show that muscle fibers and other cell types repair m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cell Biology
سال: 1994
ISSN: 0021-9525,1540-8140
DOI: 10.1083/jcb.127.5.1199